Relationship of light scattering at an angle in the backward direction to the backscattering coefficient.

نویسندگان

  • E Boss
  • W S Pegau
چکیده

We revisit the problem of computing the backscattering coefficient based on the measurement of scattering at one angle in the back direction. Our approach uses theory and new observations of the volume scattering function (VSF) to evaluate the choice of angle used to estimate b(b). We add to previous studies by explicitly treating the molecular backscattering of water (b(bw)) and its contribution to the VSF shape and to b(b). We find that there are two reasons for the tight correlation between observed scattering near 120 degrees and the backscattering coefficient reported by Oishi [Appl. Opt. 29, 4658, (1990)], namely, that (1) the shape of the VSF of particles (normalized to the backscattering) does not vary much near that angle for particle assemblages of differing optical properties and size, and (2) the ratio of the VSF to the backscattering is not sensitive to the contribution by water near this angle. We provide a method to correct for the water contribution to backscattering when single-angle measurements are used in the back direction (for angles spanning from near 90 degrees to 160 degrees ) that should provide improved estimates of the backscattering coefficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of the scattering anisotropy with optical coherence tomography.

In this work we demonstrate measurements with optical coherence tomography (OCT) of the scattering phase function in the backward direction and the scattering anisotropy parameter g. Measurements of the OCT attenuation coefficient and the backscattering amplitude are performed on calibrated polystyrene microspheres with a time-domain OCT system. From these measurements the phase function in the...

متن کامل

HELICITY AND PLANAR AMPLITUDES IN PION-PROTON SCATTERING AT 6.0 GeV/c

In addition to optimal conditions, invariant laws of Lorentz, parity and time reversal are imposed to find the relation between observables (spin rotation parameters) and bilinear combination of helicity amplitudes in pion-proton elastic scattering at 6.0 GeV/c. By normalizing the differential cross-section to unity, the magnitudes of helicity amplitudes and the angle between them are dete...

متن کامل

Random backscattering in the parabolic scaling

In this paper we revisit the parabolic approximation for wave propagation in random media by taking into account backscattering. We obtain a system of transport equations for the moments of the components of reflection and transmission operators. In the regime in which forward scattering is strong and backward scattering is weak, we obtain closed form expressions for physically relevant quantit...

متن کامل

همبستگی تخلخل با زبری توسط طیف پراکندگی سطوح نانویی سیلیکان متخلخل

Reflection spectra of four porous silicon samples under etching times of 2, 6, 10, and 14 min with current density of 10 mA/cm2 were measured. Reflection spectra behaviors for all samples were the same, but their intensities were different and decreased by increasing the etching time. The similar behavior of reflection spectra could be attributed to the electrolyte solution concentration which ...

متن کامل

Increased incoherent backscattering from a liquid-solid interface at the Rayleigh angle

The experimentally observed peak in the backward radiation from a liquid-solid interface at the Rayleigh angle is caused by a sharp increase in the otherwise relatively weak incoherent scattering from the inherent inhomogeneities of the solid. The increase of the incoherent backscattering is essentially a specular effect in contrast with the nonspecular, finite-beam effect predicted to cause th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 40 30  شماره 

صفحات  -

تاریخ انتشار 2001